Application of Thermal Shock Test Chamber

Application of Thermal Shock Test Chamber

Thermal shock test chamber is an indispensable test equipment for aviation, automotive, home appliances, scientific research and other fields, used to test and determine the parameters and performance of electrical, electronic and other products and materials after temperature environment changes in high temperature, low temperature, alternating humidity and heat degree or constant test; Or constant humid heat test after the temperature environment changes the parameters and performance. Applicable to schools, factories, research positions, etc.

Thermal Shock Test Chamber

1, the high and low temperature impact test chamber with automatic, high-precision system loop, any part action, fully PLC locking processing, all use PID automatic calculation control, high temperature control precision, advanced scientific air circulation cycle design, make the indoor temperature uniform, avoid any dead corners; The complete protection device avoids any possible hidden dangers and ensures the long-term reliability of the equipment.

2, high and low temperature impact test chamber adopts advanced measuring device, and the controller adopts a large color LCD man-machine touch dialogue LCD man-machine interface controller, which is simple to operate, easy to learn, stable and reliable, and displays the complete system operation status, execution and setting program curve in Chinese and English. With 96 test specifications independently set, impact time 999 hours 59 minutes, cycle cycle 1~999 times can be set, can realize the automatic operation of the refrigerator, to a large extent to achieve automation, reduce the workload of the operator, can automatically start and stop working at any time.

3, The left side of the chamber has a test hole with a diameter of 50mm, which can be used for wiring test parts with external power load. Can be independently set high temperature, low temperature and cold and thermal shock three different conditions of the function, and in the implementation of cold and thermal shock conditions, you can choose two or three trough and cold flushing, hot flushing impact function, with high and low temperature testing machine function.

Comparison of Climatic Test and Environmental Test

Comparison of Climatic Test and Environmental Test

Climate environment test -- constant temperature and humidity test chamber, high and low temperature test chamber, cold and hot shock test chamber, wet and heat alternating test chamber, rapid temperature change test chamber, linear temperature change test chamber, walk-in constant temperature and humidity test chamber, etc. They all involve temperature control.

High and Low Temperature Humidity Test Chamber

Because there are multiple temperature control points to choose from, the climate chamber temperature control method also has three solutions: inlet temperature control, product temperature control and "cascade" temperature control. The first two are single-point temperature control, and the third is two-parameter temperature control.

Single point temperature control method has been very mature and widely used.

Most of the early control methods were "ping-pong" switch control, commonly known as heating when it's cold and cooling when it's hot. This control mode is a feedback control mode. When the temperature of the circulating air flow is higher than the set temperature, the electromagnetic valve of refrigeration is opened to deliver cold volume to the circulating air flow and reduce the temperature of the air flow. Otherwise, the circuit switch of the heating device is switched on to directly heat the circulating air flow. Raise the temperature of the air stream. This control mode requires that the refrigeration device and heating components of the test chamber are always in a standby working state, which not only wastes a lot of energy, but also the controlled parameter (temperature) is always in an "oscillation" state, and the control accuracy is not high.

Now the single-point temperature control method is mostly changed to the universal proportional differential integral (PID) control method, which can give the controlled temperature correction according to the past change of the controlled parameter (integral control) and the change trend (differential control), which not only saves energy, but also the "oscillation" amplitude is small and the control accuracy is high.

Dual-parameter temperature control is to collect the temperature value of the air inlet of the test chamber and the temperature value near the product at the same time. The air inlet of the test chamber is very close to the installation position of the evaporator and heater in the air modulation room, and its magnitude directly reflects the air modulation result. Using this temperature value as the feedback control parameter has the advantage of quickly modulating the status parameters of the circulating air.

The temperature value near the product indicates the real temperature environmental conditions suffered by the product, which is the requirement of the environmental test specification. Using this temperature value as the parameter of feedback control can ensure the effectiveness and credibility of the temperature environmental test, so this approach takes into account the advantages of both and the requirements of the actual test. The dual-parameter temperature control strategy can be the independent "time-sharing control" of the two groups of temperature data, or the weighted two temperature values can be combined into one temperature value as a feedback control signal according to a certain weighting coefficient, and the value of the weighting coefficient is related to the size of the test chamber, the wind speed of the circulating air flow, the size of the temperature change rate, the heat output of the product work and other parameters.

Because heat transfer is a complex dynamic physical process, and is greatly affected by the atmospheric environment conditions around the test chamber, the working state of the tested sample itself, and the complexity of the structure, it is difficult to establish a perfect mathematical model for the temperature and humidity control of the test chamber. In order to improve the stability and accuracy of control, fuzzy logic control theory and method are introduced in the control of some temperature test chambers. In the control process, the thinking mode of human is simulated, and the predictive control is adopted to control the temperature and humidity space field more quickly.

Compared with the temperature, the selection of humidity measurement and control points is relatively simple. During the circulation flow of the well-regulated humid air into the high and low temperature cycle test chamber, the exchange of water molecules between the wet air and the test piece and the four walls of the test chamber is very small. As long as the temperature of the circulating air is stable, the circulating air flow from entering the test chamber to exiting the test chamber is in the process. The moisture content of wet air changes very little. Therefore, the relative humidity value of the detected air at any point of the circulating air flow field in the test box, such as the inlet, the middle stream of the flow field or the return air outlet, is basically the same. Because of this, in many test chambers that use the wet and dry bulb method to measure humidity, the wet and dry bulb sensor is installed at the return air outlet of the test chamber. Moreover, from the structural design of the test box and the convenience of maintenance in use, the wet and dry bulb sensor used for relative humidity measurement and control is placed at the return air inlet for easy installation, and also helps to regularly replace the wet bulb gauze and clean the temperature sensing head of the resistance PT100, and according to the requirements of the GJB150.9A wet heat test 6.1.3. The wind speed passing through the wet-bulb sensor should not be lower than 4.6m/s. The wet-bulb sensor with a small fan is installed at the return air outlet for easier maintenance and use.

 

 

 

Comparison of Natural Convection Test Chamber, Constant Temperature and Humidity Test Chamber and High Temperature Oven

Comparison of Natural Convection Test Chamber, Constant Temperature and Humidity Test Chamber and High Temperature Oven

Instructions:

Home entertainment audio-visual equipment and automotive electronics are one of the key products of many manufacturers, and the product in the development process must simulate the adaptability of the product to temperature and electronic characteristics at different temperatures. However, when using a general oven or thermal and humidity chamber to simulate the temperature environment, either the oven or thermal and humidity chamber has a test area equipped with a circulating fan, so there will be wind speed problems in the test area.

During the test, the temperature uniformity is balanced by rotating the circulating fan. Although the temperature uniformity of the test area can be achieved through the wind circulation, the heat of the product to be tested will also be taken away by the circulating air, which will be significantly inconsistent with the actual product in the wind-free use environment (such as the living room, indoor).

Constant Temperature and Humidity Test Chamber

Because of the relationship of wind circulation, the temperature difference of the product to be tested will be nearly 10℃. In order to simulate the actual use of environmental conditions, many people will misunderstand that only the test chamber can produce temperature (such as: oven, constant temperature humidity chamber) can carry out natural convection test. In fact, this is not the case. In the specification, there are special requirements for wind speed, and a test environment without wind speed is required. Through the natural convection test equipment and software, the temperature environment without passing through the fan (natural convection) is generated, and the test integration test is performed for the temperature detection of the product under test. This solution can be used for home related electronics or real-world ambient temperature testing in confined Spaces (e.g., large LCD TV, car cockpits, automotive electronics, laptops, desktops, game consoles, stereos, etc.).

Unforced air circulation test specification :IEC-68-2-2, GB2423.2, GB2423.2-89 3.31 The difference between the test environment with or without wind circulation and the test of products to be tested:

Instructions:

If the product to be tested is not energized, the product to be tested will not heat itself, its heat source only absorbs the air heat in the test furnace, and if the product to be tested is energized and heated, the wind circulation in the test furnace will take away the heat of the product to be tested. Every 1 meter increase in wind speed, its heat will be reduced by about 10%. Suppose to simulate the temperature characteristics of electronic products in an indoor environment without air conditioning. If an oven or a constant temperature humidifier is used to simulate 35 °C, although the environment can be controlled within 35 °C through electric heating and compressor, the wind circulation of the oven and the thermal and humidify test chamber will take away the heat of the product to be tested. So that the actual temperature of the product to be tested is lower than the temperature under the real windless state. It is necessary to use a natural convection test chamber without wind speed to effectively simulate the actual windless environment (indoor, no starting car cockpit, instrument chassis, outdoor waterproof chamber... Such environment).

Comparison table of wind speed and IC product to be tested:

Description: When the ambient wind speed is faster, the IC surface temperature will also take away the IC surface heat due to the wind cycle, resulting in the faster the wind speed and the lower the temperature.

 

 

 

 

Definition and Characteristics of UV Weathering Test Chamber

Definition and Characteristics of UV Weathering Test Chamber

    Uv weathering test chamber is a professional equipment used to simulate and evaluate the resistance of materials to ultraviolet radiation and corresponding climatic conditions. Its core function is to simulate the effect of ultraviolet light on materials in the natural environment through artificially controlled ultraviolet radiation, temperature and humidity changes, so as to conduct comprehensive and systematic tests on the durability, color stability and physical properties of materials. In recent years, with the development of science and technology and the continuous improvement of material performance requirements, the application of UV weathering test chambers has become more and more extensive, covering plastics, coatings, rubber, textiles and other fields.

UV Weathering Test Chamber

    The characteristics of the equipment are mainly reflected in its high efficiency and accuracy. First of all, the UV weathering test chamber uses a high-intensity ultraviolet lamp, which emits an ultraviolet spectrum close to sunlight, which can accurately simulate the lighting conditions in the real environment. Secondly, it has a real-time monitoring and control system, which can precisely regulate the internal temperature, humidity and UV intensity to ensure the stability of the test process and the reliability of the results. In addition, the internal material and structural design of the test chamber is also particularly important, which usually uses corrosion resistant and oxidation resistant materials to extend the service life of the equipment and improve the accuracy of the test.

    In addition, the application of UV weathering test chamber is not only limited to the aging detection of materials, but also can predict and improve the performance of materials, making manufacturers more forward-looking and scientific in material selection and product design. The use of this equipment to a large extent reduces the quality problems caused by the lack of weather resistance of the product and improves the market competitiveness of the product. Therefore, in the material research and development, the UV weathering test chamber can be described as an indispensable auxiliary tool, which helps enterprises quickly detect and optimize material properties to meet the changing needs of the market.

    In short, UV weathering test chamber, as an advanced testing technology, is leading the progress and innovation in the field of materials science. With the increasing demand for environmentally friendly materials and long-lasting products, the importance of such equipment will only become more prominent. Its scientific, reliable and efficient will help all walks of life to develop more high-quality products to cope with more unknown challenges in the future.

High and Low Temperature Test Standard of PC Plastic Material

High and Low Temperature Test Standard of PC Plastic Material

1. High temperature test

    After being placed at 80±2℃ for 4 hours and at normal temperature for 2 hours, the dimensions, insulation resistance, voltage resistance, key function, and loop resistance meet the normal requirements, and there are no abnormal phenomena such as deformation, warping, and degumming in appearance. The key convex point collapses at high temperature and the press force becomes smaller without assessment.

2. Low temperature test

After being placed at -30±2℃ for 4 hours and at normal temperature for 2 hours, the dimensions, insulation resistance, voltage resistance, key function, and loop resistance meet normal requirements, and there are no abnormal phenomena such as deformation, warping, and degumming in appearance.

3. Temperature cycle test

Put in 70±2℃ environment for 30 minutes, take out at room temperature for 5 minutes; Leave in -20±2℃ environment for 30 minutes, remove and leave at room temperature for 5 minutes. After such 5 cycles, the dimensions, insulation resistance, voltage resistance, key function, circuit resistance meet the normal requirements, and the appearance of no deformation, warping, degumming and other abnormal phenomena. The key convex point collapses at high temperature and the press force becomes smaller without assessment.

4. Heat resistance

After being placed in an environment with a temperature of 40±2℃ and a relative humidity of 93±2%rh for 48 hours, the dimensions, insulation resistance, voltage resistance, key function, and loop resistance meet normal requirements, and the appearance is not deformed, warped, or degumped. The key convex point collapses at high temperature and the press force becomes smaller without assessment.

National standard value for plastic testing:

Gb1033-86 Plastic density and relative density test method

Gbl636-79 Test method for apparent density of moulding plastics

GB/ T7155.1-87 Thermoplastic pipe and pipe fittings density determination part: polyethylene pipe and pipe fittings reference density determination

GB/ T7155.2-87 Thermoplastic pipes and fittings -- Determination of density -- Part L: Determination of density of polypropylene pipes and fittings

GB/T1039-92 General rules for testing mechanical properties of plastics

GB/ T14234-93 Surface roughness of plastic parts

Gb8807-88 plastic mirror gloss test method

Test method for tensile properties of GBL3022-9L plastic film

GB/ TL040-92 Test method for tensile properties of plastics

Test method for tensile properties of GB/ T8804.1-88 thermoplastic pipes polyvinyl chloride pipes

GB/ T8804.2-88 Test methods for tensile properties of thermoplastic pipes Polyethylene pipes

Hg2-163-65 plastic low temperature elongation test method

GB/ T5471-85 Method for preparing thermosetting molding specimens

HG/ T2-1122-77 thermoplastic sample preparation method

GB/ T9352-88 thermoplastic compression sample preparation

Temperature Cycling Chamber

www.oven.cc

labcompanion.cn   Lab Companion China
labcompanion.com.cn  Lab Companion China
lab-companion.com    Lab Companion   
labcompanion.com.hk  Lab Companion Hong Kong
labcompanion.hk  Lab Companion Hong Kong
labcompanion.de  Lab Companion Germany 
labcompanion.it    Lab Companion Italy  
labcompanion.es   Lab Companion Spain   
labcompanion.com.mx  Lab Companion Mexico   
labcompanion.uk  Lab Companion United Kingdom
labcompanion.ru  Lab Companion Russia   
labcompanion.jp  Lab Companion Japan    
labcompanion.in  Lab Companion India  
labcompanion.fr   Lab Companion France
labcompanion.kr  Lab Companion Korea

Solar Module Test Project

Solar Module Test Project

1. solar module reliability test specification:

The reliability test of the solar module is to confirm the performance of the solar module (early), and the test specifications for the module are mainly IEC61215, IEC61646, UL1703 three test specifications. IEC61215 is suitable for crystalline (Si) modules; IEC61646 is suitable for thin-film (Thin-flm) modules; The UL1703 is suitable for both crystalline and thin film solar modules. In addition, the GB and CNS solar energy specifications are partially modified from the IEC.

2. the relationship and importance of Macro Exhibition and solar energy test projects:

According to IEC61215, IEC61646 test items a total of about 10 (solar module test items corresponding to the general table). Among them, the test equipment manufactured by Hongjian will be used, and the relevant test conditions are temperature cycling (Thermal cycling, 10.11). There are three categories of Humidity freeze (10.12) and Damp heat (10.13), while UL1703 only has two items of temperature cycle wet freezing without the item of damp heat.

3. Thermal cycling test (Thermal cycling)lEC61215-10-11:

Solar module temperature cycle test is used to determine the fatigue, thermal failure, or other stress failure caused by repeated changes in temperature of the module. The current number of temperature cycles is 200 times, and the future trend will be 600 times (according to the test results of the American Association for Renewable Energy [NREL], the power degradation rate of 600 times is greater than 200 times as much as twice).

Through the temperature cycle: defects of the module can be found: crack growth, module cracks, warping, sealing material delamination, point shedding, glass corrosion... Let's wait.

Temperature conditions: Low temperature :-40℃, high temperature :85°C(IEC), 90 °C(UL), the fastest temperature variability (average):100 °C /h, 120 °C /h, relevant measurements need to be carried out during the test (using the Qingsheng solar energy measurement system), the test process needs to measure the module: module surface temperature, voltage and current, ground continuity, insulation... Let's wait.

4. the purpose of the temperature cycle test process through bias:

Temperature cycle test process, the specification requires through bias, the purpose of the test is to make the defective Cell heat to accelerate aging and accelerate failure test purposes, so it needs to be energized above 25℃ during the temperature cycle process, the laboratory in the United States has statistics, It was found that the difference between the failure rate of the solar module with power and without power is as high as 30%, and the experimental data indicates that if there is no power, the solar module is not easy to fail in the temperature cycle environment, so when carrying out the temperature cycle test of the solar cell (Cel)& module, it needs to be matched with a special measurement system.

5. the introduction of wet freezing test lEC61215-10-12:

Description: To determine whether the component is sufficiently resistant to corrosion damage and the ability of moisture expansion to expand the material molecules, frozen moisture is the stress to determine the cause of failure. For the product to be tested, the test stress is high temperature and high humidity (85℃/85%R.H) to low temperature (-40℃ humidity 85%R.H). Maintain to 25℃), and low temperature rise to high temperature and high humidity, rather than 85℃/85%R.H./20 hours, 85℃/85%R.H./20 hours, the purpose of 85℃/85%R.H./20 hours is to let the module surrounding full of water, 20 hours dwell time is too short, is not enough for water to penetrate into the module and junction box inside.

Through wet freezing test: Module defects can be found: cracks, warping, severe corrosion, lamination of sealing materials, failure of adhesive delamination junction box & water accumulation, wet insulation **... Etc.

Test conditions: 85 ℃ / 85% R.H. (h) 20-40 ℃ (0.5 ~ 4 h), maximum heat up 100, 120 ℃ / h, and maximum temperature of 200 ° C/h.

6. Purpose of wet freezing test:

The wet freezing test method is mainly to perform two kinds of damage to the solar module in a snowy environment.

(1). High temperature and humidity (85℃/85%R.H.) drop to -4℃ before 25℃, humidity should be controlled at 85%+5% RH. The purpose of this is to simulate the high humidity sudden change before the snow.

Before the snow, the environment will show a high humidity state, and when the temperature drops to 0℃, the water gas around the module and the junction box sealant will freeze. When the water gas freezes, its volume will expand to 1.1 times of the original, and the destruction method of ice expansion after the water gas penetrates the material gap through the water gas to achieve the purpose of this test. At present, the statistical results of wet freezing have the highest damage to junction box sealant, which will cause junction box degumming and water, and the failure ratio of module is estimated at 7%.

(2). The purpose of heating up from low temperature (-40℃) and humidity (50℃/85%R.H.) is to simulate the temperature rise in the module at sunrise in a snowy climate. Although the outdoor environment is still below 0℃, the solar module will generate electricity when there is light, and because the snow is still on the module, the heat spot effect will occur in the module. The temperature inside the module will also reach 50 ° C.

7. wet heat test (Damp heat) test IEC61215-10-13:

Description: To determine the ability of the module to resist long-term moisture penetration, according to the test results of BP Solar, its 1000 hours is not enough. The actual condition is found that the time to make the module have problems needs at least 1250 hours. According to the current requirements of the specification, the wet heat test process is not powered on, but the future trend is also to be powered on (positive and reverse bias), because it can accelerate the aging and failure of solar cells.

Test conditions: 85℃/85%R.H., time :1000 hours Defects can be found through the wet and thermal test: CELL delamination EVA(delamination, discoloration, bubble formation, atomization, Browning), connection line blackening, TCO corrosion, spot corrosion, Thin-film yellow discoloration, junction box degumming off

UV Weathering Test Chamber

 

 

Working Principle of UV Weathering Test Chamber

Working Principle of UV Weathering Test Chamber

Uv weathering test chamber is a kind of experimental equipment specially used to test the durability and stability of materials and products under ultraviolet radiation. Its working principle revolves around mimicking UV radiation conditions in the natural environment to assess how materials behave when exposed to sunlight for long periods of time. The chamber is equipped with a series of high-intensity ultraviolet light sources that effectively emit ultraviolet light in a specific wavelength range, mimicking the UV-A and UV-B bands of natural sunlight.

During the test, the sample is placed in the test chamber, and ultraviolet radiation will cause changes in the chemical structure of the surface of the material, such as color fading, strength reduction and brittleness increase. At the same time, the test chamber can also be combined with environmental factors such as temperature and humidity for a more comprehensive evaluation of the sample. For example, the humidity control system in the laboratory can simulate the effects of rain and moisture, while the temperature control equipment can reproduce extreme hot or cold conditions.

UV Weathering Test Chamber

By exposing the samples to multiple rounds of ultraviolet radiation at different time periods, researchers were able to collect a large amount of experimental data and analyze the aging resistance and service life of the samples in depth. These data play a vital role in material development, product quality control and market demand analysis. In addition, the use of UV weathering test chambers also helps companies anticipate possible performance problems before the launch of new products, so as to make timely adjustments and improvements.

Such tests are not only applicable to plastics, coatings, fibers and other materials, but also widely used in various industries such as automobiles, construction fields and even electronic products. By studying the performance of products in different climatic conditions, companies can improve the competitiveness of their products in the market, but also contribute to the environmental cause, because good weather resistance products usually mean a longer life cycle and less material waste.

In short, UV weathering test chambers play a key role in materials science and product development, not only allowing developers to better grasp material properties, but also for consumers to bring higher quality and more durable products. In the future development of science and technology, with the continuous progress of ultraviolet weathering test technology, we may be able to witness the birth of more new materials and new products, adding more convenience and beauty to our lives.

Unleashing the Power of Innovation The inch Industrial Touch Screen Android Panel PC J1900 and Core i3 i5 Processors Mini PC VFACE-19

In today’s fast-paced industrial world, efficiency, reliability, and seamless connectivity are integral to success. That’s where inch Industrial Touch Screen Android Panel PC J1900 and Core i3 i5 Processors Mini PC VFACE-19 come into play. Designed specifically for industrial control all-in-one machine enthusiasts, these cutting-edge devices offer a range of unique features and benefits that elevate industrial processes to new heights.

Powerful Performance

The inch Industrial Touch Screen Android Panel PC J1900 is equipped with a high-performance Intel J1900 quad-core processor. This exceptional processing power allows for smooth multitasking, quick response times, and efficient data processing. Whether you’re running complex control applications or managing data-intensive operations, this Android Panel PC delivers uncompromising performance that keeps your industrial control systems running at peak efficiency.

Similarly, the Core i3 i5 Processors Mini PC VFACE-19 offers blazing-fast processing power with its Intel Core i3 and i5 processors. These processors provide enhanced performance and superior energy efficiency, ensuring seamless operation even in demanding industrial environments. Say goodbye to lags and bottlenecks, and embrace the power and reliability of the Core i3 i5 processors to optimize your industrial control all-in-one machine.

Intuitive Touchscreen Experience

One of the standout features of the inch Industrial Touch Screen Android Panel PC J1900 is its intuitive 19-inch capacitive touchscreen display. With multi-touch support, gesture recognition, and an ultra-sensitive surface, this device enables effortless interaction and smooth navigation. The vibrant visuals and wide viewing angle further enhance the user experience, allowing for clear and precise controls that simplify complex industrial tasks.

The Core i3 i5 Processors Mini PC VFACE-19 also offers a user-friendly touchscreen interface. With its high-resolution display and responsive touch capabilities, controlling your industrial systems becomes a breeze. The intuitive nature of the touchscreen not only improves productivity but also reduces the learning curve for new users, making it an ideal choice for industrial control all-in-one machine enthusiasts seeking efficiency and ease of operation.

Versatile Connectivity

Both the inch Industrial Touch Screen Android Panel PC J1900 and Core i3 i5 Processors Mini PC VFACE-19 boast a wide range of connectivity options. With multiple USB ports, HDMI output, Ethernet ports, and expansion slots, connecting to peripherals, industrial equipment, and networks is effortless. These devices also support wireless connectivity, including Wi-Fi and Bluetooth, allowing for seamless integration into existing industrial setups.

Durability and Reliability

Industrial environments demand rugged and reliable devices. The inch Industrial Touch Screen Android Panel PC J1900 and Core i3 i5 Processors Mini PC VFACE-19 are built to withstand the harshest conditions. With industrial-grade components, fanless design, and extensive temperature ranges, these devices can operate flawlessly in extreme temperatures, dusty environments, and high vibration scenarios.

Conclusion

For industrial control all-in-one machine enthusiasts, inch Industrial Touch Screen Android Panel PC J1900 and Core i3 i5 Processors Mini PC VFACE-19 are revolutions in efficiency, reliability, and performance. With powerful processors, intuitive touchscreens, versatile connectivity, and unrivaled durability, these devices empower your operations to reach new heights of productivity and success. Embrace the power of innovation and elevate your industrial processes today with these exceptional devices.

What is the service life of the brushless fan?

Brushless fans are popular in the market due to their high efficiency, long life and low maintenance costs. Compared with the traditional brush fan, the brushless fan does not have the friction of the brush and the commutator, so the service life of the fan is greatly extended. Brushless exhaust fans produced by Chungfo Electronics perform well in a variety of applications, especially for heat dissipation and exhaust in high temperature environments.

brushless cooling fan

How long is the service life of the brushless fan? Generally speaking, the life of brushless fans can reach more than 50,000 hours, and even longer use time can be achieved under certain conditions. This is mainly due to its frictionless design and efficient heat dissipation.

 

When choosing a brushless exhaust fan, price and life are important factors to consider. For users who need small exhaust fans, the Chungfo Electronics’s small exhaust fan price is not only reasonable, but also has significant advantages in performance and durability. In addition, we also provide high temp exhaust fan Wholesale to meet a wide range of industrial and commercial needs.

 

In conclusion, the long life of brushless fans makes them ideal for many applications, especially in environments where long-term stable operation is required. Contact Chungfo Electronics to learn more about brushless fans and other cooling solutions.

Smart 1 Chute Glass Color Sorter Efficiently Sorting Glass by Color

Glass recycling is an essential process for reducing waste and minimizing environmental impact. However, ensuring that the recycled glass meets quality standards can be a challenge. That’s where the Smart 1 Chute Glass Color Sorter comes in.

As a product editor, I’m excited to introduce this state-of-the-art, automatic glass sorting machine. A pioneer in the industry, this intelligent color sorter is designed to streamline the recycling process by efficiently sorting glass based on color.

The Smart 1 Chute Glass Color Sorter utilizes advanced imaging technology and cutting-edge algorithms to achieve precise and reliable color sorting results. With its ability to process massive volumes of glass at high speeds, this machine helps recycling facilities increase efficiency and productivity.

One of the standout features of this glass color sorter is its versatility. Whether you’re sorting bottles, jars, or broken glass, the Smart 1 Chute Glass Color Sorter handles it all with ease. Its adaptive sorting system can identify and separate various colors, including clear, green, brown, blue, or any custom color requirement.

Not only does the Smart 1 Chute Glass Color Sorter enhance recycling efficiency, but it also improves the overall quality of recycled glass. By ensuring that only glass of the desired color passes through, this machine reduces contaminants and produces high-grade recycled material.

The automated sorting process of this machine eliminates the need for manual inspection, saving both time and labor costs. Moreover, its user-friendly interface allows for easy operation and monitoring. Operators can customize sorting parameters and monitor the machine’s performance in real time, ensuring optimal sorting accuracy.

When it comes to sustainability, the Smart 1 Chute Glass Color Sorter is on the forefront. By enabling efficient glass recycling, it significantly contributes to the circular economy. The sorted glass can be used in various industries, including bottle manufacturing, fiberglass production, and construction materials.

In conclusion, the Smart 1 Chute Glass Color Sorter is revolutionizing the glass recycling industry. This automatic glass sorting machine combines advanced technology, intelligent color sorting, and user-friendly operation to achieve efficient and precise sorting results. By producing high-quality recycled glass, it positively impacts the environment while helping businesses thrive in the circular economy.